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The crystal and magnetic structures of the brownmillerite Ca,Cr0SFe,,505 have been refined from 
neutron powder diffraction data collected at 2.1 K, space group Prima, a = 5.4083(l) A, b = 14.6561(3) 
A, c = 5.5923(l) A. The 4-coordinate cation sites are occupied only by iron; the 6-coordinate sites 
are occupied by a random 1: 1 distribution of iron and chromium. The compound shows G-type 
antiferromagnetism at 2.1 K with average ordered magnetic moments of 3.23(4) and 3.95(5)~,, aligned 
along 2, at the 6- and 4-coordinate sites respectively. dl 1991 Academic Prew. Inc. 

Introduction 

Since the discovery of “high-tempera- 
ture” superconductivity in YBa,Cu,07, 
there has been a resurgence of interest in 
the structural and electronic properties of 
anion-deficient perovskites. This has en- 
compassed the well-established brownmill- 
erite structure (I) known to be adopted by 
some compounds having the general for- 
mula A&O, (A = Ca, Sr; B = Fe, Co), and 
the related Grenier phases (2) A,LaFe,O,. 
Our own work has included a study of Sr, 
CoFeO, (3)) a brownmillerite containing two 
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different transition metals, and in this paper 
we describe the structural characterization 
of another such compound, Ca,Cr,,,Fe, ,50,, 
using neutron powder diffraction tech- 
niques. 

The brownmillerite structure can be 
thought of as a perovskite with 16% of the 
anion sites vacant. The vacancies are not 
randomly distributed through the crystal 
structure; they order in chains along the 
[ 1101 direction of the primitive cubic perov- 
skite unit cell in such a way as to give alter- 
nate layers of 4-coordinate and 6-coor- 
dinate transition metal ions. The result- 
ing orthorhombic unit cell, of size 
tia, x 4a, x ea,, is drawn in Fig. 1. 
The strength of the magnetic superexchange 
interactions between the transition metal 
cations in this structure is sufficiently great 
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FIG. 1. The transition metal polyhedra in the brown- 
millerite structure. The distribution of atoms in 
Ca2Cr0,5FeI,50S is indicated. 

to ensure that Sr,Fe,O, , Sr,Co,O, , and Ca, 
Fe,O, are all antiferromagnetic at room tem- 
perature. The introduction of a second mag- 
netic species having a different number of 
electrons in the outer 3d shell may perturb 
this magnetic ordering and modify the NCel 
temperature but, more interestingly, it may 
also introduce a ferromagnetic component 
into the superexchange. It has been pre- 
dicted (4) that the superexchange between a 
d3 ion and a ds ion will be ferromagnetic if 
the bond angle at the intervening anion is 
sufficiently close to 180”. We have recently 
observed such coupling between Fe3+ and 
Fe’+ in BaLaFe,O,,,, (5), and one aim of the 
present work was to establish whether or 
not the same effect could be detected be- 
tween Cr3+ : 3d3 and Fe3+ : 3ds in 
Ca,Cr,,,Fe,,,O,. Previous studies (6, 7) of 
this compound by 57Fe Mossbauer spectros- 

copy have indicated that it is magnetically 
ordered below 45.5 K, but they did not give 
any definitive information about the relative 
orientation of Cr3+ and Fe3+ spins. This in- 
formation can, however, be gleaned from a 
neutron diffraction experiment. The extent 
to which local ferromagnetic superexchange 
is reflected in the long-range magnetic order- 
ing will, of course, depend on the degree of 
positional ordering of the two cation species 
over the 6- and 4-coordinate sites. The first 
Mossbauer study of Ca,Cr,,,Fe,,,O, (6) led 
to the rather surprising conclusion that 25% 
of the Cr3+ ions occupied 4-coordinate sites 
whereas our own Mossbauer data (7) sug- 
gest that Cr occupies only 6-coordinate 
sites. The difference between the neutron 
scattering lengths of iron and chromium is 
sufficiently large to ensure that the experi- 
ments described below are very sensitive to 
this particular structural parameter. 

Experimental 

The preparation and X-ray characteriza- 
tion of Ca,Cr,,,Fe,,,O, have been described 
previously (7). Powder neutron diffraction 
data were collected at 2.1 K on the diffracto- 
meter Dla at ILL Grenoble using a mean 
neutron wavelength of 1.9118 A and a 213 
step size of 0.05” in the angular range 0 < 20 
< 156”. The sample was contained in a thin- 
walled vanadium can during data collection, 
which took approximately 11 hr to com- 
plete. 

Results 

The neutron diffraction data were ana- 
lyzed using the Brookhaven version (8) of 
the Rietveld profile analysis method (9). The 
following coherent scattering lengths were 
used: b,, = 0.490, bcr = 0.352, b,, = 0.945, 
b, = 0.58 x 10-l’ cm. Although Sr,Fe,O,, 
Ca,Fe,O, , and Sr,Co,O, are all regarded as 
isostructural, there are subtle differences in 
their space group symmetry (3). We were 
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able to refine the crystal structure of 
Ca,Cr,,,Fe,,,05 in space group Pnma, as 
used previously for Ca,Fe,05 (10). The ob- 
served diffraction pattern contained addi- 
tional maxima due to magnetic scattering, 
and the relative positions of these peaks sug- 
gested that Ca,Cr,,,Fe,,50, is a G-type anti- 
ferromagnet at low temperatures. This type 
of magnetic ordering, very common among 
perovskites, leaves each magnetic cation 
antiferromagnetically aligned with respect 
to the six nearest-neighbor cations, irre- 
spective of whether they are in 6- or 4-coor- 
dination. Refinement of the crystal and mag- 
netic structures (assuming a brownmillerite 
structure with G-type ordering) involved 33 
variable parameters and 325 reflections in 
the angular range 13” < 28 < 153”. The pa- 
rameters included 21 structural parameters 
and 12 profile parameters. The background 
was fitted using a three-parameter function 
and the peak shape, a Gaussian, was de- 
scribed by three parameters. The free-ion 
form factor for Fe 3+ (II) was used to de- 
scribe the angular variation of the magnetic 
scattering from both the 6- and the 4-coordi- 
nate sites. Preliminary refinements showed 
no evidence for the presence of Cr3+ on the 
latter, and the cation distribution was held 
fixed during our final refinements, which 
converged at agreement factors of Rwpr = 
5.4%, RNuc = 2.7%. The resultant structural 
parameters are listed in Table I and the cor- 
responding bond lengths and bond angles 
are presented in Table II. The final ob- 
served, calculated, and difference diffrac- 
tion profiles are drawn in Fig. 2. 

Discussion 

The crystal structure of Ca,Cr,,,Fe,,,O, is 
very similar to that of Ca,Fe,O, . The Cr3+ 
ions apparently substitute for Fe3+ on the 
octahedral sites only. This result was ex- 
pected in the light of our own Mossbauer 
data (7), but contradicts the results of Gren- 
ier et al. (6). The oxygen arrangement 

TABLE I 

STRUCTURAL PARAMETERS FOR Caj-3, 5Fe,,s0S AT 
2. I K (SPACE GROUPPWTZU) 

CL3 8d 0.481X3) 0.1069X8) 0.0236(3) 0.5X3) - 
CriFel 4a 0 0 0 0.03(3) 3.23(4) 
Fe2 4c 0.9466(2) 114 0.9340(2) 0.2X3) 3.95(S) 
01 8d 0.2617(4) 0.98415(9) 0.2388(3) 0.29(3) - 
02 8d 0.0238(3) 0.13925(8) 0.0713(2) 0.33(3) - 
03 4c 0.596013) 114 0.8759(4) 0.47(4) - 

Note. a = 5.4083(lLk, b = 14.6561(3)rk, c = 5.5923Cl)A 

around the 6-coordinate site is irregular; the 
metal-oxygen bonds (Cr/Fel-01) which lie 
within the octahedral layers are significantly 
shorter than those (Cr/Fel-02) which are 
perpendicular to the layers. This geometry 
is common to all brownmillerites (3, 10, 12) 
and the distortion of the 6-coordinate site 
may be one reason that only 28% of the 
iron can be replaced by chromium, which is 
significantly smaller and is known to prefer a 
regular, octahedral environment. There was 
no evidence for any ordering of Fe3+ and 
Cr3+ over the 6-coordinate sites. 

The magnetic structure of Ca,Cr,,,Fe,.,05 
is also very similar to that of Ca,Fe,O, (13), 

TABLE II 

BOND LENGTHS(IN &AND BOND ANGLES(IN 
DEGREES) FOR Ca2Cro,5Fe,,505 AT 2.1 K 

c-01 2.47014) G--02 2.534(3) 
c-0 I ' 2.42214) Cd-O?' 2.9X3(3) 
G-0 I " 2.45914) C--O?" 2.326(3) 
Ca-01"' 2.702(4) G-03 2.337(4) 
CriFelbOl 1.96013) x 2 Fe?-02 1.844(3) x 2 
Cr/Fel-Ol' 1.96213) x 2 Fe?-03 1.924(3) 
CriFel-02 2.0X3(2) x 2 Fe2-03' 1.912(3) 

Shortest oxygen-oxygen contacts: 
Ol--ol 2.707(4) 
01-02 2.775(41 

Bond an!& 
Ol-Cri Fel-01' 
01-Cri Fel-02 

Cr/Felql-Cr/Fel 
Fe-02-CriFel 
FeZ-03-Fe2 

92.7 02~Fe2-02 123.4 
93.4 02-Fe2-03 107.1 

02-FeZ-03' 106.4 
165.4 
140.2 
124.7 
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FIG. 2. Observed (...), calculated (--) and difference neutron powder diffraction profiles for 
Ca&r,,Fe, 5O5 at 2.1 K. Reflection positions are marked. 

with the atomic magnetic moments aligning 
in a G-type array along the shortest crystal- 
lographic axis (x). Sr,Fe,O, (12) and Sr, 
FeCoO, (3) both adopt space group Zcmm 
rather than Pnma and they therefore have 
disordered 4-coordinate sites. We have pre- 
viously suggested that this disorder may be 
partly responsible for the low values of the 
ordered magnetic moments observed in Sr, 
FeCoO, and Sr,Fe,O, (<4pB per Fe3 ‘) com- 
pared to the value of 4.5 ? 0.2~~ found (13) 
in ordered (Pnma) Ca,Fe,O, . The magnetic 
moments of 3.95(5) and 3.23(7),uL, found for 
the tetrahedral and octahedral sites respec- 
tively in Ca,Cr,,,Fe,.,O, are slightly lower 
than might have been expected; for example 
tetrahedrally coordinated Fe3+ shows a 
magnetic moment of 4.35~~ in FePO, (14), 
a value of 4.40~~ has been reported (1.5) for 
6-coordinate Fe3+ in LaFeO, , and 2.55~~ 
for Cr3+ in CrPO, (16); the latter two values 
would lead to an average magnetic moment 
of 3.47~~ per cation in a G-type antiferro- 
magnet consisting of a 1 : 1 disordered array 
of Cr3+ and Fe3+. In the case of 
Ca,Cr,,,Fe,,,O, the existence of crystallo- 

graphic disorder cannot be invoked as an 
explanation for the small discrepancy. How- 
ever, the presence of atomic disorder on the 
6-coordinates sites, Cr3+ and Fe3+ having 
different magnetic anisotropies, might lead 
to a slight misalignment of spin directions in 
the antiferromagnetic phase, and hence to a 
small reduction in the average ordered com- 
ponent of the magnetic moment, as mea- 
sured in the neutron diffraction experiment. 
We have recently reported (5) ferromagnetic 
coupling between d3 and d5 ions randomly 
distributed in a 1 : 3 ratio over the transition 
metal sites of the perovskite BaLaFe,O,,,, . 
This behavior results in an anomalously low 
value (ca. 1.9~~) for the average magnetic 
moment per cation although the overall dif- 
fraction pattern is still that of a G-type anti- 
ferromagnet. If this type of coupling occur- 
red in Ca,Cr,,,Fe,,,O, we would expect to 
see an average moment of only -0.9~~) i.e., 
(P Fe3+ -pCr3+)/2, at the octahedral site. 
Thus, whatever the subtleties of the spin 
structure in Ca,Cr,,,,Fe,.,O1, it is clear from 
the values of the atomic magnetic moments 
that ferromagnetic coupling does not occur 
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to a significant extent in this compound, and 
that all the spins are essentially coupled anti- 
parallel to those of their six nearest neigh- 
bors, giving a true G-type antiferromagnet. 
The lack of ferromagnetic coupling between 
the aliovalent ions in Ca,Cr,,5Fe,,505 can be 
ascribed to the deviation from linearity of 
the Cr-O-Fe superexchange pathway (Ta- 
ble II). BaLaFe,0,.9, is a cubic material hav- 
ing linear superexchange pathways between 
Fe3+ and Fe’+ ions. The results of this dif- 
fraction study thus confirm the conclusions 
drawn in a detailed Massbauer study of per- 
ovskite solid solutions (17, 18). In order to 
make new magnetic materials, the proper- 
ties of which depend on ferromagnetic 
superexchange between aliovalent cations, 
we must turn to high symmetry crystal 
structures with essentially linear superex- 
change pathways. 
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